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Pathological behavior in the spectral statistics of the asymmetric rotor model
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The aim of this work is to study the spectral statistics of the asymmetric rotor model~triaxial rigid rotator!.
The asymmetric top is classically integrable and, according to the Berry-Tabor theory, its spectral statistics
should be Poissonian. Surprisingly, our numerical results show that the nearest-neighbor spacing distribution
P(s) and the spectral rigidityD3(L) do not follow Poisson statistics. In particular,P(s) shows a sharp peak at
s51 while D3(L) for small values ofL follows the Poissonian predictions and asymptotically it shows large
fluctuations around its mean value. Finally, we analyze the information entropy, which shows a dissolution of
quantum numbers by breaking the axial symmetry of the rigid rotator.
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I. INTRODUCTION

In the semiclassical limit@1,2# there is a clear connectio
between the behavior of classical systems~regular or cha-
otic! and the corresponding quantal ones. For quantal
tems corresponding to classical regular systems, the spe
statistics@P(s) and D3(L)# follow the Poisson ensemble
while for systems corresponding to chaotic ones the Wig
ensemble is followed~see, for example, Ref.@3# and refer-
ences therein!.

Nevertheless, some exceptions are known. The mos
mous case is perhaps the harmonic oscillator one, discu
in great detail in Refs.@4,5#. It has been also found tha
low-energy spectral statistics of higher-dimensional se
rable Hamiltonian systems can show the level repulsion ty
cal for chaotic systems. Especially critical in this sense
the systems close to the harmonic oscillators and to rec
gular wells@6#.

The aim of this paper is to discuss another patholog
case: the classically integrable triaxial rotator model~see, for
instance, Ref.@7#!. Incidentally, this model has been use
very often in the description of the low-lying states of t
even-even atomic nuclei@8#.

The asymmetric top described by the rotor model is
classically integrable system, but an analytical formula, a
function of quantum numbers, for its energy spectrum is
known. Nevertheless, numerical results can be obtained
following the Landau approach@9#, the Hamiltonian operato
is split into four submatrices, corresponding to different sy
metry classes. Each truncated submatrix is numerically
agonalized. Finally, the nearest-neighbor spacing distribu
P(s) and the spectral rigidityD3(L) are calculated. Surpris
ingly, the spectral statistics of energy levels do not follow t
predictions of Poisson statistics.

II. THE ASYMMETRIC ROTOR MODEL

Let us consider a system of coordinates with axes al
the three principal axes of intertia of the top, and rotat
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with it. The classical HamiltonianH of the top is given by

Ĥ5
1

2
~aJ1

21bJ2
21cJ3

2!, ~1!

whereJ5(J1 ,J2 ,J3) is the angular momentum of the rota
tion anda51/I 1 , b51/I 2 , c51/I 3 are three parameters suc
that I 1 , I 2, andI 3 are the principal momenta of intertia of th
top. The Hamiltonian is classically integrable and its acti
variables are precisely the three componentsJs , s51,2,3, of
the angular momentum@7#.

The quantum HamiltonianĤ is obtained by replacing the
components of the angular momentum, in the classical
pression of the energy, by the corresponding quantum op
tors Ĵ1 , Ĵ2, andĴ3. The commutation rules for the operato
of the angular momentum components in the rotating sys
of coordinates are given by

Ĵr Ĵs2 ĴsĴr52 i\e rstĴt , ~2!

where e rst is the Ricci tensor andr ,s,t51,2,3. Note that
these commutation rules differ from those in the fixed syst
in the sign on the right-hand side@9#.

As usual, the two operatorsĴ25 Ĵ1
21 Ĵ2

21 Ĵ3
2 and Ĵ3 are

simultaneously diagonalized on the basis of eigenstatesuJ,k&
with integer eigenvaluesJ and k (k52J,2J11, . . . ,J
21,J), respectively. The nonzero matrix elements of t
quantum HamiltonianĤ in the basisuJ,k& are given by

TABLE I. Number of states in each submatrix of the asymme
cal top Hamiltonian for a fixedJ.

(E,S) (E,A) (O,S) (O,A)

J even J/211 J/2 J/2 J/2
J odd (J21)/2 (J11)/2 (J11)/2 (J11)/2
©2001 The American Physical Society01-1
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^J,kuĤuJ,k&5
\2

4
~a1b!@J~J11!2k2#1

\2

2
ck2, ~3!

^J,kuĤuJ,k12&5^J,k12uHuJ,k&5
\2

8
~a2b!A~J2k!~J2k21!~J1k11!~J1k12!. ~4!

FIG. 1. Density of levelsr(E) of the four
classes of symmetry withJ51000. Parameters
a51, b5A2, c5A5, and\51.
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The quantum HamiltonianĤ has matrix elements only fo
transitions withk→k or k62. The absence of matrix ele
ments for transitions between states with even and oddk has
the result that the matrix of degree 2J11 is the direct prod-
uct of two matrices of degreesJ and J11. One of these
contains matrix elements for transitions between states
evenk and the other contains those for transitions betw
states with oddk @9#.

It is useful to introduce a new basis given by

uJ,k;S&5
1

A2
~ uJ,k&1uJ,2k&), uJ,0,S&5uJ,0&,

uJ,k;A&5
1

A2
~ uJ,k&2uJ,2k&), kÞ0. ~5!

By using this new basis, the total Hamiltonian matrix is d
composed in the direct product of four submatrices by c
sidering the parity of the quantum numberk: even~E! or odd
(O), and the symmetry of the state: symmetric~S! or anti-
symmetric (A). So the submatrices are labeled as follow
(E,S), (E,A), (O,S), (O,A). These are the classes of sym
metry of the system. In Table I we show the dimension
each submatrix for a fixedJ.

The matrix elements of the HamiltonianĤ in the new
basis, with respect to the old basis, are given by
06620
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^J,k,SuĤuJ,k,S&5^J,k,AuĤuJ,k,A&5^J,kuĤuJ,k&, kÞ1,
~6!

^J,1,SuĤuJ,1,S&5^J,1uĤuJ,1&1^J,1uĤuJ,21&, ~7!

^J,1,AuĤuJ,1,A&5^J,1uĤuJ,1&2^J,1uĤuJ,21&, ~8!

^J,k,SuĤuJ,k12,S&5^J,k,AuĤuJ,k12,A&

5^J,kuĤuJ,k12&, kÞ0, ~9!

^J,0,SuĤuJ,2,S&5A2^J,0uĤuJ,2&, kÞ0. ~10!

We calculate the eigenvalues of each submatrix for differ
values ofJ using a fast implementation, in double precisio
of the Lanczos algorithm with a LAPAC code@10#. In Fig. 1
we plot the density of levelsr(E) of each submatrix ofĤ
and J51000. The results show that the density of levels
practically the same for the four classes.r(E) displays a
high peak at the left center of the energy interval and a lo
tail for large energy values.

III. SPECTRAL STATISTICS

As previously discussed, according to the Berry-Tab
theory@11,12#, given a classical integrable Hamiltonian tha
written in action variablesJr , satisfies the condition
1-2
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U ]2H

]Jr]Js
UÞ0, ~11!

then, in the semiclassical limit, its spectral statistics sho
follow the Poisson statistics. Note that a system of lin
harmonic oscillators, whose Hamiltonian is given byH5v
•I , does not satisfy the previous condition. In fact, a syst
of linear harmonic oscillators is integrable but it does n
follow Poissonian statistics@4,5#.

The triaxial rigid rotator is integrable and satisfies t
Berry-Tabor condition~11!. Thus, one expects that the spe
tral statistics of the quantized rigid rotator should be Pois
nian. We shall show that is not the case.

In general, various statistics may be used to show
local correlations of the energy levels but the most u

FIG. 2. Nearest-neighbor spacing distributionP(s) of the four
classes of symmetry withJ51000. The dashed line is the Poisso
predictionP(s)5exp(2s). Parameters:a51, b5A2, c5A5, and
\51.
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spectral statistics areP(s) andD3(L). P(s) is the distribu-
tion of nearest-neighbor spacingssi5(Ẽi 112Ẽi) of the un-
folded levelsẼi . It is obtained by accumulating the numb
of spacings that lie within the bin (s,s1Ds) and then nor-
malizingP(s) to unit. As shown by Berry and Tabor@11,12#,
for quantum systems whose classical analogs are integra
P(s) is expected to follow the Poisson distribution

P~s!5exp~2s!. ~12!

The statistic D3(L) is defined, for a fixed interval
(2L/2,L/2), as the least-square deviation of the stairc
function N(E) from the best straight line fitting it,

D3~L !5
1

L
min
A,B

E
2L/2

L/2

@N~E!2AE2B#2dE,

FIG. 3. Spectral rigidityD3(L) of the four classes of symmetr
with J51000. The dashed line is the Poisson predictionD3(L)
5L/15. Parameters:a51, b5A2, c5A5, and\51.
ers:
FIG. 4. Density of levelsr(E). Nearest-
neighbor spacing distributionP(s) and spectral
rigidity D3(L) of the (E,S) class of symmetry,
with J52000 ~top! and J54000 ~bottom!.
Dashed lines are Poisson predictions. Paramet
a51, b5A2, c5A5, and\51.
1-3
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FIG. 5. Density of levelsr(E) of the (E,S)
class of symmetry, withJ51000. Parameters:b
5A2, c5A5, and\51. Different values of the
deformation parameter:~a! a5A2, ~b! a5A1.9,
~c! a5A1.5, ~d! a51, ~e! a5A0.5, ~f! a50.
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ical
: the
whereN(E) is the number of levels betweenE and zero for
positive energy, between2E and zero for negative energy
The D3(L) statistic provides a measure of the degree of
gidity of the spectrum: for a given intervalL, the smaller
D3(L) is, the stronger is the rigidity, signifying the long
range correlations between levels. For this statistic the P
sonian prediction is

D3~L !5
L

15
. ~13!

It is useful to remember that Berry, on the basis of t
Gutwiller semiclassical formula for the density of states, h
shown thatD3(L) deviates from the universal Poissonia
predictions for large L: D3(L) should saturate to an
asymptotic value performing damped oscillations@13#.

In Fig. 2 the spectral statisticP(s) is plotted for the four
submatrices ofĤ andJ51000. Note that the level spectrum
is mapped into unfolded levels with quasiuniform level de
sity by using a standard procedure described in Ref.@14#. As
expected from the previous analysis of density of leve
P(s) is practically the same for the four classes of symme
Moreover,P(s) has a pathological behavior: a peak neas
51 and nothing elsewhere. Compared toP(s), the spectral
rigidity D3(L) is less pathological. As shown in Fig. 3
D3(L) follows quite well the Poisson predictionD3(L)
06620
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5L/15 for smallL but for larger values ofL it gets a constant
mean value with fluctuations around this mean value. Th
fluctuations become very large by increasingL, in contrast
with the Berry prediction@13#.

The behavior of the density of levelsr(E) and of the
spectral statisticsP(s) andD3(L) does not change by chang
ing the matrix dimension, namely, the quantum numberJ. In
Fig. 4 we plot the density of levels and the spectral statis
for J52000 andJ54000.

The results shown in the first four figures have been
tained with a51, b5A2 and A5, in such a way that the
rotor is triaxial. It is interesting to see what happens if o
changes the deformation parametersa, b, andc, studying the
transition from axial symmetry to triaxial symmetry. To d
so, we take fixedb andc and modifya. In Fig. 5 we plot the
density of levelsr(E) for six values ofa ranging froma
5A2 to a50. The casea5b5A2 corresponds to the axia
symmetric one. The density of levelsr(E) is strongly modi-
fied by changing the parametera, i.e., by breaking the axia
symmetry, but the spectral statistics are not, as shown by
6 for theP(s) distribution.

To conclude this section, we discuss another statist
quantity that has been proposed to study quantum chaos
information entropyS(E) of the eigenvectoruE& associated
with the eigenvalueE of the the Hamiltonian operatorĤ
@15#. Given a generic basis set$u i &%, the eigenvectoruE& can
be written as
n

r:
FIG. 6. Nearest-neighbor spacing distributio
P(s) of the (E,S) class of symmetry, withJ
51000. Parameters:b5A2, c5A5, and \51.
Different values of the deformation paramete
~a! a5A2, ~b! a5A1.9, ~c! a5A1.5, ~d! a51,
~e! a5A0.5, ~f! a50.
1-4
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FIG. 7. Information entropyS(E) of the
(E,S) class of symmetry, withJ51000. Param-
eters:b5A2, c5A5, and\51. Different values
of the deformation parameter:~a! a5A2, ~b! a
5A1.9, ~c! a5A1.5, ~d! a51, ~e! a5A0.5, and
~f! a50.
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uE&5(
i

ci u i &, ~14!

whereci are the probability amplitudes. Then, the inform
tion entropy of the eigenvectoruE& with respect to the basi
set$u i &% is defined as

S~E!52(
i

uci u2ln uci u2. ~15!

The idea is that, just as in the classical theory a dissolutio
integrability ~with the KAM mechanism! simply means the
onset of chaotic motion, in quantum systems a dissolution
quantum numbers may indicate the onset of quantum ch
~see also Ref.@16#!. In Fig, 7 we show the information en
tropy S(E) of the eigenvectors of the Hamiltonian matrix
symmetry class (E,S) with respect to the axial symmetri
basis setuJ,k,S&, calculated for different values of the defo
mation parametera. As expected, if the system has axi
symmetry (a5A2) then the information entropyS(E) is ev-
erywhere zero. By deforming the system, i.e., by break
the axial symmetry,S(E) becomes positive and it is larger i
the central part of the energy spectrum. It is important
stress that in our system the dissolution of quantum num
shown in Fig. 7 does not have a classical analog becaus
classical Hamiltonian is always integrable. Thus, in our ca
a largeS(E) simply means a fully broken axial symmetry o
the rigid rotor.
06620
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CONCLUSIONS

The main conclusion of this paper is that the asymme
rotor is, like the harmonic oscillator, another pathologic
case with respect to the classical-quantum correspond
between the integrability and Poisson statistics. In our op
ion, the pathology of the asymmetric rotor model is mo
interesting because, unlike the harmonic oscillator, the as
metric rotor satisfies the conditions of the Berry-Tab
theory. The presence of hidden symmetries could explain
pathological behavior of spectral statistics but such symm
tries have not yet been identified. For the sake of comple
ness we remember that, as stressed by Rau@17#, in classical
mechanics, the asymmetric rotor and the nonlinear pendu
are intimately linked and form the basis for many studies
nonlinear dynamics. Finally, we have shown that the inf
mation entropy of eivenvectors with the respect to the ax
symmetric basis set gives a clear signature of the breakin
axial symmetry of the rigid rotator, but the rigid rotator
always classically integrable.
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